Final Report on Project entitled:

"Studies on Soil Microflora of Bt and Non-Bt Cotton Fields: A Comparative Evaluation"

Submitted to:

JK Agri Genetics Ltd. Hyderabad

By:

Institute of Microbial Technology Sector- 39 A, Chandigarh-160 036

Project Teams

Project team from IMTECH

- 1. Dr. R.K. Jain (Project leader)
- 2. Dr. Shivani Ghai (Research Associate)

Project team from JKAL

1. Dr. P.S. Bhattacharya (Dy. General Manager)

Financial Support

This study was funded by JK Agri Genetics Ltd., Hyderabad

Introduction

Cotton is a very important fiber crop in India. Cotton provides a livelihood to more than 60 million people in India by way of support in agriculture, processing, and use of cotton in textiles. Cotton contributes 29.8% of the Indian agricultural gross domestic product, and nearly nine million hectares of land in India is used to produce 14.2 million bales of cotton lint (Barwale *et al.*, 2004). Indian cotton production is third in the world in quantity, although the productivity is substantially low. The major reason for the low productivity is damage caused by insect pest- *Helicoverpa armigera*, commonly referred to as American Bollworm. Other important lepidopteran insect pests of cotton in India are the pink bollworm (*Pectinophora gossypiella*), spotted bollworm (*Earias vittella*), spiny bollworm (*Earias insulana*) and tobacco caterpillar (*Spodoptera litura*). Nearly, Rs. 12 billion worth of pesticides are used in India to control just the bollworm complex of cotton.

Bt cotton was among the first GM crops to be commercialized in the mid-1990s. Mahyco (Maharashtra Hybrid Seed Company), in collaboration with Monsanto, has introduced Bt cotton technology in India. Bt cotton carries the Cry1Ac gene derived from the common soil bacterium *Bacillus thuringienesis* (Bt) var. *kurstaki*, which results in the expression of the Cry1 Ac protein that confers resistance to the bollworm complex. There is extensive information about microbial preparations of *Bacillus thuringiensis* sub sp. kurstaki (B.t.k.) containing Cry proteins, including the Cry1 Ac protein, that demonstrate that these proteins are non toxic to non-target organisms (US.EPA, 1988; Betz *et al.*, 2000). In another study, Palm *et al.*, (1994, 1996) indicated that Bt protein does not persist in the soil and is broken down in a matter of weeks. It can be clearly established that the Cry proteins are extremely selective for the lepidopteron insects, bind specifically to receptors on the midgut of lepidopteron insects and have no deleterious effect on beneficial/non-target insects.

The introduction of transgenic crops has provided new approaches to improving crop quality and productivity but at the same time, these crops have aroused concerns about the safety of agricultural biotechnology in relation to human health and the environment. An important aspect of the biosafety assessment of genetically engineered plants is to study their impact on soil ecosystems including changes in the plant-associated microflora.

Therefore, in the present study we have assessed the effect of Bt cotton on soil microflora in terms of the total population of bacteria and fungi, in control (0 day), Bt and Non-Bt soil samples (50 and 150 days) by the dilution plating method. In addition to this, the Bt protein concentration in control, Bt and Non-Bt soil samples were estimated using Enzyme

Linked Immunosorbent Assays (ELISA). The soil samples that were analyzed were from six different states i.e. Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu of two consecutive crop seasons.

Objectives of the study

The Environmental safety of the transgenic Bt cotton crops being an issue of concern, it is important to study their impact on the soil ecosystem (microbial diversity), for which detailed comparative studies with the traditional cotton crops need to be undertaken. Keeping this in mind, the objectives of the present study are:

- 1. To determine the total soil microflora in soil samples taken from Bt and Non-Bt cotton fields.
- 2. Characterization of the dominant bacteria present in these soil samples.
- 3. To estimate Bt protein concentration in Bt- and Non-Bt cotton soils.

(i) Determination of the soil microbial diversity

In order to evaluate the impact of the transgenic or Bt cotton crops on soil ecosystems, extensive studies were carried out to determine the soil microbial diversity. In all the studies carried out in present work, we have used the soil samples from six different states i.e. Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu of two consecutive crop seasons. The soil samples provided by the JK Agri Genetics Ltd. of the above mentioned states were described as control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of I crop season and control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of II crop season respectively. Various parameters such as pH, electrical conductivity, organic matter content, etc. of the above mentioned soil samples of both the crop seasons have been provided by JK Agri Genetics Ltd. (Table 1 & Table 2).

(a) Total colony counts:

For the determination of the total number of bacterial and fungal populations present in the soil samples (control, Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere), suspensions of the soil samples were prepared in sterile normal saline by suspending 1g of soil sample in 10ml of saline. The samples were then vortexed vigorously and placed on a shaker for 30 minutes at 215 rpm. These primary soil suspensions were serially diluted further and appropriate dilutions were plated on various media such as soyabean casein digest agar (tryptone soya agar or TSA) and potato dextrose agar (PDA). The plates were incubated at 30°C for 2-3 days. The total numbers of colonies were counted after the completion of the incubation period and the numbers of colony forming units (CFUs) were determined per gram of soil. The data for the total number of CFUs obtained on various media for the control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of I crop season and control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of II crop season, soil samples of Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu are presented in tables 3-8 and 9-14, respectively. As it is clear from tables 3-14, all the colony counts were obtained in the range of 106 CFU/g of soil both in Bt as well as Non-Bt soil samples for both crop seasons. These results indicate that no particular difference was observed in any of the samples examined on the various media used.

(b) Determination of the predominant types of colonies:

In order to determine the total microbial diversity present in the Bt and Non-Bt cotton soil environments; the number of different types of colonies present on the plates were determined purely based on colony morphology. Also, the percentage of the predominant types of colonies was calculated from the total colony counts on the plates. Each morphologically different type of colony was characterized in terms of colony characteristics such as color, shape, texture, etc of the colonies. Therefore, about 700-800 colonies isolated on various media were characterized in this manner.

The data for the predominant types of colonies obtained on Tryptone soya agar (TSA) of all the soil samples i.e. control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) and soil samples Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of I crop season are presented in Table 15-20 and Table 21-26, respectively. Similarly, soil samples of control (0 day), Bt rhizosphere, Non-Bt rhizosphere (50 days) and Bt rhizosphere, Non-Bt rhizosphere (150 days) of II crop season of Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu are presented in Table 27-32 and Table 33-38, respectively.

(c) Preservation of the microorganisms:

Each colony was preserved in 10% glycerol stocks at -70° C. Each colony was given a unique and specific preservation number from which it can be later revived and used for identification purposes.

(d) Identification of the microorganisms:

The identification of the cultures was on the basis of a number of biochemical tests according to Bergey's manual of Systematic Bacteriology (Vol. 1 & 2, 1986). Table 39 & 40 shows the genus level identification tests of the most dominant bacteria isolated from control, Bt and Non-Bt soil samples of the I crop season and II crop season respectively. The most prominent members of bacteria obtained in control, Bt and Non-Bt soil samples belonged to members of *Bacillus* sp. Some of the other species of bacteria isolated from Bt and Non-Bt soil samples included those of *Arthrobacter* sp., *Kurthia* sp., *Micrococcus* sp. and *Alcaligenes* sp.

(ii) Estimation of Bt protein (Cry1Ac) concentration in Bt and Non Bt soils

E. Ramachandran (Scientist, JK Agri Genetics Ltd.), using Envirologix Quantiplate TM Kit for Cry1Ab/Cry1Ac at Institute of Microbial Technology (IMTECH) Chandigarh has done estimation of Bt protein (Cry1Ac) concentration in Bt and Non-Bt soils for I crop season. The estimation of Bt protein (Cry1 Ac) concentration in soil samples of II crop season was done using Cry1 Ac/ Ab Elisa Kit (Amar Immunodiagnostics), provided by JK Agri Genetics Ltd. The level of Cry1Ac protein in all soil samples was evaluated using Enzyme linked immunosorbent assays (ELISA).

Procedure:

Put 0.5 g of soil sample in 1.5 ml eppendorf tube each

↓ uff

Add 1 ml extraction buffer in each tube

V Shake well

Vortex each tube for 2 min. approx.

,

Centrifuge it at 12,000 rpm for 2-3 min.

Load 100 µl of each sample in Cry1Ab/Ac coated plate

Incubate for 15 min. at room temperature

Add Cry1 Ab/Ac enzyme conjugate (100 μl) in each well

Incubate for 1h at room temperature

Washing with Phosphate Buffer Saline (5-6 times)

After drying, add 100 µl of substrate in each well

Incubate for 30 min. at room temp.

Add Stop Solution

Take reading at 450 nm in ELISA reader

Table 41 represents the readings of blank, 1.5ng, 10ng and 25ng (calibrators available in kit for Cry1Ac proteins in triplicate) and soil samples i.e. control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu, of I crop season.

Table 42 represents the readings of blank, negative and positive control (available in kit for Cry1Ac proteins in duplicate) and soil samples i.e., control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu, of II crop season.

It was observed that there was no detectable amount of Cry1 Ac protein present in the soil samples of both the crop seasons.

Conclusions

On the basis of present study, it can be concluded that the soil microbial diversity data on total colony counts of culturable microorganisms revealed no particular difference in control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of I crop season and control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of II crop season of any of the state i.e. Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu. About 700-800 bacterial cultures from control, Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere soil samples of both the crop seasons were isolated on tryptone soya agar (TSA) and preserved as glycerol stocks at -70°C. The unique colony characteristics for all the isolated colonies have been recorded and the most predominant cultures from TSA plates have been identified. The predominant types of colonies obtained on TSA plates of control, Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere soil samples of I and II crop season belonged to the genera of *Bacillus* sp. The Bt protein (Cry1 Ac) concentration in Bt and Non-Bt soil samples estimated and it has been observed that there was no detectable amount of Cry1Ac protein in the soil samples of both the crop seasons.

- Barwale, R.B., Gadwal, V.R., Zehr, U. and Zehr, B. (2004). Prospects for Bt cotton technology in India. *AgBioforum*. 7 (1&2): 23-26.
- Betz, F.S., Hammond, B.G. and Fuchs, R.L. (2000). Safety and advantages of *Bacillus thuringiensis* protected plants to control insect pests. *Regulatory Toxicology and Pharmacology.* **32**: 156-173.
- Palm, C.J., K. Donegan, D. Harris, and R.J. Seidler. 1994. Quantification in soil of *Bacillus thuringiensis* var. *kurstaki* d-endotoxin from transgenic plants. *Molecular Ecology.* **3**:145-151.
- Palm, C.J., D.L. Schaller, K.K. Donegan, and R.J. Seidler. 1996. Persistence in soil of transgenic plant produced *Bacillus thuringiensis* var. *kurstaki* delta-endotoxin. *Canadian Journal of Microbiology.* **42**: 1258-12652.
- U.S. EPA. (1988). Guidance for the re-registration of pesticide containing *Bacillus* thuringiensis as the active ingredient. NTIS PB89-164198.

Table 1: Various parameters of soil samples (of I crop season) from six different states i.e. Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu (Provided by JK Agri Genetics Ltd.)

	CIIIIS	Kajasthan	Gujarat	Maharashtra	Karnataka	Andhra	Tamil
Hd	()	9.04	7.73	9.00	7.50	8.36	8.91
Electrical Conductivity	(milli.mho)	0.094	0.041	0.084	0.046	0.186	0.094
Organic Matter	(%)	86.0	1.01	1.76	0.92	1.63	1.59
Nitrogen	(%)	0.026	0.023	0.029	0.033	0.056	0.041
Phosphorus	(mdd)	12	7	13	∞		6
Potassium	(mdd)	139	161	182	101	157	108
Chlorides	(%)	0.0709	0.0561	0.079	0.067	0.106	0.106
Sodium Absorption	()	1.59	2.04	1.28	3.10	4.00	1.64

Table 2: Various parameters of soil samples (of II crop season) from six different states i.e. Rajasthan, Gujarat, Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu (Provided by JK Agri Genetics Ltd.)

Parameters	Units	Rajasthan	Gujarat	Maharashtra Karnataka	Karnataka	Andhra	Tamil
			,			Pradesh	Nadu
Hd	()	8.75	8.71	8.64	99.8	8.57	8.76
(20% solution)							
Electrical	(milli.mho)	0.440	0.166	0.185	0.262	0.205	0.166
Conductivity							
Organic	(%)	0.70	0.81	0.81	1.32	0.862	0.899
Matter							
Nitrogen	(%)	290	340	440	490	480	378
Phosphorus	(mdd)	18.70	12.50	13.10	13.50	15.80	12.42
Potassium	(mdd)	313	91	42	26	159	43
Chlorides	(%)	160	71	. 98	78	75	96
Total Dissolved	(mdd)	260	102	111	157	135	109
solids							

Table 3: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Rajasthan soil samples of I crop season

Media				Co	Colony Forming Units/o soil	nits/o soil			
	O day		50	50 days	9	1100 8 1011	021		
	Company	D.		7			OCI	days	
	Control	191		Non-Bt	Non-Bt	Bt	Bt	Non-Bt	Non-Bt
			rnizosphere		rhizosphere		rhizoenhere		whiredanhous
Tryntone Sove	0.80~100	1 0106	0 54-106	10 406	9-1-1		a randeogram		rinkospilere
1.0XIU	0.07410	1.0X1U	0.24X10	1.9x10°	3.1×10°	3 7×10°	5 6v106	1 05,106	2 2 106
Agar (TSA)						0.1.0	0.0010		3.2X10
Dotato Doviting 0 20106 0 44 06	0 20106	90 44 0	90,	9					
1 Orato Devilose	0.38X10	0.44XU	0.3/x10°	$0.33 \times 10^{\circ}$	1 0x10°	18~106	2 25,106	0 50 106	90,4
Agar (PDA)					0 1 10 1	010011	3.2X10	0.59X10	1.0x10°

Table 4: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Gujarat soil samples of I crop season

	Media				Colo	onv Forming IIn	ite/a coil			
Control Bt Non-Bt Non-Bt Non-Bt Bt Bt Bt Non-Bt $1.0x10^6$ $1.0x10^6$ $1.6x10^6$ $1.9x10^6$ $1.6x10^6$ $4.4x10^6$ $1.4x10^6$ $5.0x10^6$ $0.32x10^6$ $0.49x0^6$ $0.35x10^6$ $0.42x10^6$ $0.93x10^6$ $0.93x10^6$ $0.93x10^6$		O dos.		1		Smiring Circ	113/8 3011			
Control Bt Non-Bt Non-Bt Bt Bt Non-Bt $1.0x10^6$ $1.0x10^6$ $1.9x10^6$ $1.6x10^6$ $1.6x10^6$ $1.6x10^6$ $4.4x10^6$ $1.4x10^6$ $5.0x10^6$ $0.32x10^6$ $0.49x0^6$ $0.35x10^6$ $0.38x10^6$ $0.93x10^6$ $0.93x10^6$ $0.93x10^6$		O day		20	days			150 2	OATO	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Contuc	D.					n oct	lays	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		COLLETO	191	Bt		Non-Bt	Bt	Bt	Non-Bt	Non-Bt
				rnizospnere		rhizosphere		rhizosphere		rhizoenhoro
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tryntone Cove			1 106		7		a variable community		a randenamin r
ose 0.32×10^6 0.49×0^6 0.35×10^6 0.38×10^6 0.42×10^6 0.93×10^6 0.76×10^6 0.93×10^6	Trypione Soya			1.6X10		1.6×10°	4 4x10°	1 4~106	5 00100	2 2106
ose 0.32×10^6 0.49×0^6 0.35×10^6 0.38×10^6 0.42×10^6 0.93×10^6 0.76×10^6 0.93×10^6	Agar (TSA)							OIVLI	0.0410	0.2X1U
ose $0.32 \times 10^{\circ}$ $0.49 \times 0^{\circ}$ $0.35 \times 10^{\circ}$ $0.38 \times 10^{\circ}$ $0.42 \times 10^{\circ}$ $0.93 \times 10^{\circ}$ $0.93 \times 10^{\circ}$ $0.93 \times 10^{\circ}$	0	4					70			
U.93XIU	Potato Dextrose	$0.32x10^{\circ}$	$0.49x0^{\circ}$	0.35×10^{6}	0.38×10^6	0.42×10 ⁶	0 93×106	0.76~106	0.02106	0.04.106
	Agar (PDA)						0.0000	0.70210	0.95X10	0.94X10

Table 5: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Maharashtra soil samples of I crop season

			Non-Bt	rhizoenhoro	2.2x10 ⁶		1.1x10 ⁶
		davs	Non-Bt		6.8x10 ⁶		1.9x10 ⁶
		150	Bt	rhizosphere	4.9x10 ⁶		$1.0x10^{6}$
mita/a acil	1115/g SOII		Bt		$6.4x10^{6}$		1.2×10^{6}
Colony Forming Unite/2 20:1	o Summing o		Non-Bt	rnizosphere	$2.6 \times 10^{\circ}$		$0.21x10^{\circ}$
Color		oo days	Non-Bt	4	1.0x10°	90,	0.31x10°
	50.5	00	Bt rhizosnhara	2 0 100	2.0XIU	0 21-106	0.31X10
		D4	DI	12,106	1.2410	01750	0.4240
	O day	Control	Country	1 2×106	0107	031×106	
Media				Tryptone sova	agar (TSA)	Potato Dextrose	Agar (PDA)

Table 6: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Karnataka soil samples of I crop season

	Г	1		1			,		- T	
		And the control of th		Non-Rt	10-mar	rhizosnhere	2.6x10 ⁶		0.56×10^{6}	
			150 days	Non-Bt			2.4x10 ⁶		0.87x10 ⁶	
		4	0001	Bt		rnizosphere	4.6×10^{6}		0.54x10 ⁶	
n. / 1.	11ts/g soil			Bt			3.4×10^{6}		0.52x10 ⁶	
man Donner L	Colour Forming Units/g Soil			Non-Bt	rhizoenhoro	Tandsomer	$0.93 \times 10^{\circ}$		0.72×10^{6}	
Col		50 days		Non-Bt		100000	1.2X10°		0.65x10 ⁶	
	Cal	20		DI LLisser I	rnizosphere	0.05106	0.90810	7	0.78x10°	
			R+			2 hv106	7.0410		$0.73x10^{\circ}$	THE RESERVE OF THE PROPERTY OF
	Odev	day				1.6x10°		0 5106	0.21XU	And the second s
Media						Tryptone Sova	Agar (TSA)	Potato Daytrogo	Agar (PDA)	The second secon

Table 7: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Andhra Pradesh soil samples of I crop season

O day 50days 50days Non-Bt Non-Bt Bt Non-Bt Inizosphere In	Media				Colo	nv Forming II.	nito/0 00:1			
Control Bt Non-Bt Non-Bt Bt Non-Bt Bt Non-Bt Bt Non-Bt Non-Bt Bt Non-Bt Non-Bt Non-Bt Indizosphere In		Odov				o Smill of the	mrs/g som			
Control Bt Bt Non-Bt Non-Bt Bt Bt Bt Non-Bt $1.4x10^{\circ}$ $1.7x10^{\circ}$ $1.3x10^{\circ}$ $2.2x10^{\circ}$ $3.3x10^{\circ}$ $1.1x10^{\circ}$ $3.3x10^{\circ}$ $0.55x10^{\circ}$ $0.60x10^{\circ}$ $0.44x10^{\circ}$ $0.49x10^{\circ}$ $0.53x10^{\circ}$ $0.59x10^{\circ}$ $0.19x10^{\circ}$ $0.20x10^{\circ}$		O day		20d				150	Joseph	AND THE RESIDENCE AND ADDRESS OF THE SECOND AND THE SECOND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control	D+		1			130	days	
$1.4 \times 10^{6} 1.4 \times 10^{6} 1.7 \times 10^{6} 1.3 \times 10^{6} 2.2 \times 10^{6} 3.3 \times 10^{6} 1.1 \times 10^{6} 3.3 \times 10^{6}$ $0.56 \times 10^{6} 0.60 \times 10^{6} 0.44 \times 10^{6} 0.49 \times 10^{6} 0.53 \times 10^{6} 0.59 \times 10^{6} 0.19 \times 10^{6} 0.20 \times 10^{6}$				rhizosnhere		Non-Bt	Bt		Non-Bt	Non-Bt
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prynfone sova	1 1100		907		1 mizospinere		rhizosphere		rhizosphere
0.56×10^6 0.60×10^6 0.44×10^6 0.49×10^6 0.53×10^6 0.59×10^6 0.19×10^6 0.20×10^6	Agar (TSA)		1.4X10	1./x10°	$1.3 \times 10^{\circ}$	$2.2x10^{\circ}$	3.3×10^{6}	1.1×10^6	3.3x10 ⁶	1.2x10 ⁶
$0.50 \times 10^{\circ}$ $0.60 \times 10^{\circ}$ $0.44 \times 10^{\circ}$ $0.49 \times 10^{\circ}$ $0.53 \times 10^{\circ}$ $0.59 \times 10^{\circ}$ $0.19 \times 10^{\circ}$ $0.20 \times 10^{\circ}$	Dotato Dourtugge	0 5 7 106	90.000	2						
	Vialo Dexirose Agar (PDA)	0.36X10°	0.60x10°	0.44x10°	0.49×10^{6}	0.53×10^{6}	0.59x10 ⁶	0.19×10^{6}	0.20×10^{6}	0.13×10^{6}

Table 8: Total number of bacterial colonies on different media from control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) of Tamil Nadu soil samples of I crop season

				Non-Bt		rnizosphere	1.8x10 ⁶			$0.15 \times 10^{\circ}$
		0.00	lays	Non-Bt			1.2×10^{6}		400	0.31x10°
		150.21	syan uci	Bt	rhizoenhoro	Turkoshiici	1.1×10^6		901 100	0.34X10°
	uts/g soil			Bt			2.1x10°		0 15106	0.1321.0
	Colony Forming Units/g soil			Non-Bt	rhizosphere	7	$3.3 \times 10^{\circ}$		0 360106	010000
	COIC	50 days	MT. TO.	Non-Bt		90 - 10	3.5X10°		0.27×10^6	
		20	D+	DI	ruizospiiere	1 0106	1.0X1U		0.48×10^{6}	
			Rt	10	The second secon) Ov 100	7.0010		$1.5x0^{\circ}$	
	FO	O day	Control			2 Ov 10°		90,	$0.45x10^{\circ}$	
Media					5	rvnfone sova	agar (TSA)		Fotato Dextrose	Agar (PDA)

Table 9: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Rajasthan soil samples of II crop season

Media		Color	Colony Forming Units/g soil	iits/g soil	
	O day	20 0	50 days	150 days	ays
	Control	Bt	Non-Bt	Bt	Non-Bt
		rhizosphere	rhizosphere	rhizosphere	rhizosphere
Tryptone Soya	1.0×10^{6}	1.3×10^{6}	1.5×10^{6}	3.9×10^6	3.1×10^{6}
Agar (TSA)					
Potato Dextrose 0.35x10 ⁶	0.35×10^{6}	0.34×10^{6}	0.31×10^{6}	1.9×10^6	1.0×10^{6}
Agar (PDA)					

Table 10: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Gujarat soil samples of Π crop season

	Color	Colony Forming Units/g soil	its/g soil	
O day	200	50 days	150 days	ays
Control	Bt	Non-Bt	Bt	Non-Bt
	rhizosphere	hizosphere rhizosphere	rhizosphere rhizosphere	rhizosphere
0.8×10^{6}	1.0×10^6	1.5×10^{6}	1.3×10^6	2.0×10^6
				3.0
0.3×10^{6}	0.44×10^6	0.52×10^6	0.63×10^6	0.52×10^{6}

Table 11: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Maharashtra soil samples of II crop season

Media		Colon	Colony Forming Units/g soil	its/g soil	
	O day	50 0	50 days	150 days	avs
	Control	Bt	Non-Bt	Bt	Non-Bt
		rhizosphere	hizosphere rhizosphere	rhizosnhere	
Tryptone Soya	0.81×10^{6}	1.7x10 ⁶	1.3x10 ⁶		
Agar (TSA)				0 147 110	0.50
Potato Dextrose	0.3×10^6	0.32×10 ⁶	0.45×10^{6}	1.0 ×10 ⁶	11 × 106
Agar (PDA)				010000	1.1 410

Table 12: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Karnataka soil samples of II crop season

Media		Colon	Colony Forming Units/9 soil	its/g soil	
	O day	50 0	50 days	150 days	SAR
	Control	Bt	Non-Bt	Bt	Non-Bt
		rhizosphere	chizosphere rhizosphere	rhizosphere	rhizosnhere
Tryptone Soya	1.8×10^{6}	2.8×10^{6}	2.7x10 ⁶	3.1×10^{6}	1
Agar (TSA)					
Potato Dextrose	0.6×10^{6}	0.74×10^6	0.82×10^6	0.59 ×10 ⁶	0.68 ×106
Agar (PDA)					0.00 010

Table 13: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Andhra Pradesh soil samples of II crop season

Media		Colon	Colony Forming Units/g soil	its/g soil	
	O day	50 c	50 days	150 days	ays .
	Control	Bt	Non-Bt	Bt	Non-Bt
		rhizosphere	rhizosphere	1	rhizosphere
Tryptone Soya	$1.2x10^{6}$	1.6×10^{6}	1.6x10 ⁶ 1.6x10 ⁶	1.3×10^6	1.4×10^6
Agar (TSA)			20		
Potato Dextrose 0.61x10 ⁶	$0.61 \text{x} 10^6$	0.86×10^{6}	0.72×10^6	0.82×10^{6}	0.65×10^{6}
Agar (PDA)					

Table 14: Total number of bacterial colonies on different media from control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 and 150 days) of Tamil Nadu soil samples of II crop season

Media		Color	Colony Forming Units/g soil	iits/g soil	
	O day	20 0	50 days	150 days	ays
	Control	Bt	Non-Bt	Bt	Non-Bt
		rhizosphere	rhizosphere	rhizosphere	rhizosphere
Tryptone Soya 1.8x10 ⁶	1.8×10^{6}	2.5×10^6	2.5x10 ⁶ 2.1x10 ⁶	2.0×10^6	1.9×10^6
Agar (TSA)					F
Potato Dextrose 0.49x10 ⁶	0.49×10^{6}	0.62×10^6	0.76×10^6	0.53×10^6	0.55×10^{6}
Agar (PDA)					

Table 15: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) of Rajasthan soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	4 types	Colony 1~ 85% Colony 2~ 10%
#2	Bt	6 types	Colony 1~ 75% Colony 2~ 15%
#3	Bt rhizosphere	3 types	Colony 1~ 35% Colony 2~ 35%
#4	Non-Bt	6 types	Colony 1~ 40% Colony 2~ 30%
#5	Non-Bt rhizosphere	2 types	Colony 1~ 65% Colony 2~ 30%

Table 16: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) of Gujarat soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	5 types	Colony 1~ 35% Colony 2~ 25%
#2	Bt	6 types	Colony 1~65% Colony 2~15%
#3	Bt rhizosphere	6 types	Colony 1~ 55% Colony 2~ 25%
#4	Non-Bt	4 types	Colony 1~ 65% Colony 2~ 30%
#5	Non-Bt rhizosphere	4 types	Colony 1~ 90% Colony 2~ 5%

Table 17: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) of Maharashtra soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	6 types	Colony 1~65% Colony 2~10%
#2	Bt	7 types	Colony 1~ 80% Colony 2~ 10%
#3	Bt rhizosphere	7 types	Colony 1~ 75% Colony 2~ 5%
#4	Non-Bt	7 types	Colony 1~ 55% Colony 2~ 20%
#5	Non-Bt rhizosphere	5 types	Colony 1~ 95%

Table 18: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) of Karnataka soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	6 types	Colony 1~ 60% Colony 2~ 20%
#2	Bt	6 types	Colony 1~ 60% Colony 2~ 30%
#3	Bt rhizosphere	4 types	Colony 1~ 85% Colony 2~ 5%
#4	Non-Bt	3 types	Colony 1~ 65% Colony 2~ 30%
<i>‡</i> 5	Non-Bt rhizosphere	5 types	Colony 1~ 55% Colony 2~ 15%

Table 19: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 days) of Andhra Pradesh soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#İ	Control	13 types	Colony 1~ 45% Colony 2~ 25%
#2	Bt	10 types	Colony 1~ 60% Colony 2~ 20%
#3	Bt rhizosphere	10 types	Colony 1~ 40% Colony 2~ 40%
#4	Non-Bt	7 types	Colony 1~ 60% Colony 2~ 20%
#5	Non-Bt rhizosphere	5 types	Colony 1~ 60% Colony 2~ 35%

Table 20: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt hizosphere (50 days) of Tamil Nadu soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	8 types	Colony 1~ 60% Colony 2~ 35%
#2	Bt	5 types	Colony 1~ 75% Colony 2~ 10%
#3	Bt rhizosphere	7 types	Colony 1~ 70% Colony 2~ 10%
#4	Non-Bt	7 types	Colony 1~ 55% Colony 2~ 40%
#5	Non-Bt rhizosphere	6 types	Colony 1~ 75% Colony 2~ 20%

Table 21: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Rajasthan soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	7 types	Colony 1~ 70% Colony 2~ 20%
#3	Bt rhizosphere	9 types	Colony 1~ 35% Colony 2~ 30%
#4	Non-Bt	4 types	Colony 1~ 45% Colony 2~ 30%
#5	Non-Bt rhizosphere	7 types	Colony 1~ 40% Colony 2~ 40%

Table 22: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Gujarat soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	8 types	Colony 1~ 50% Colony 2~ 15%
#3	Bt rhizosphere	5 types	Colony 1~ 45% Colony 2~ 30%
#4	Non-Bt	3 types	Colony 1~ 45% Colony 2~ 45%
#5	Non-Bt rhizosphere	6 types	Colony 1~ 40% Colony 2~ 30%

Table 23: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Maharashtra soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	5 types	Colony 1~ 55% Colony 2~ 35%
#3	Bt rhizosphere	4 types	Colony 1~ 70% Colony 2~ 15%
#4	Non-Bt	4 types	Colony 1~ 40% Colony 2~ 25%
#5	Non-Bt rhizosphere	5 types	Colony 1~ 80% Colony 2~ 15%

Table 24: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Karnataka soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	7 types	Colony 1~ 45% Colony 2~ 25%
#3	Bt rhizosphere	5 types	Colony 1~ 85% Colony 2~ 15%
#4	Non-Bt	9 types	Colony 1~ 70% Colony 2~ 5%
#5	Non-Bt rhizosphere	5 types	Colony 1~ 85% Colony 2~ 10%

Table 25: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Andhra Pradesh soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	10 types	Colony 1~ 70% Colony 2~ 5%
#3	Bt rhizosphere	7 types	Colony 1~ 70% Colony 2~20%
#4	Non-Bt	6 types	Colony 1~ 90% Colony 2~ 5%
#5	Non-Bt rhizosphere	8 types	Colony 1~ 50% Colony 2~ 45%

Table 26: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (150 days) of Tamil Nadu soil samples of I crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt	7 types	Colony 1~ 35% Colony 2~ 25%
#3	Bt rhizosphere	5 types	Colony 1~65% Colony 2~20%
#4	Non-Bt	7 types	Colony 1~ 60% Colony 2~ 25%
#5	Non-Bt rhizosphere	4 types	Colony 1~ 50% Colony 2~ 20%

Table 27: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Rajasthan soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	4 types	Colony 1~ 60% Colony 2~ 25%
#2	Bt rhizosphere	6 types	Colony 1~ 50% Colony 2~ 15%
#3	Non-Bt rhizosphere	5 types	Colony 1~ 95% Colony 2~ 2%

Table 28: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Gujarat soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	5 types	Colony 1~ 75% Colony 2~ 11%
#2	Bt rhizosphere	4 types	Colony 1~ 45% Colony 2~ 45%
#3	Non-Bt rhizosphere	4 types	Colony 1~ 50% Colony 2~ 30%

Table 29: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Maharashtra soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	4 types	Colony 1~ 40% Colony 2~ 20%
#2	Bt rhizosphere	5 types	Colony 1~ 35% Colony 2~ 20%
#3	Non-Bt rhizosphere	8 types	Colony 1~ 25% Colony 2~ 20%

Table 30: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Karnataka soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	5 types	Colony 1~ 50% Colony 2~ 40%
#2	Bt rhizosphere	5 types	Colony 1~ 50% Colony 2~ 25%
#3	Non-Bt rhizosphere	6 types	Colony 1~ 60% Colony 2~ 25%

Table 31: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Andhra Pradesh soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	4 types	Colony 1~ 45% Colony 2~ 40%
#2	Bt rhizosphere	4 types	Colony 1~ 55% Colony 2~ 35%
#3	Non-Bt rhizosphere	5 types	Colony 1~ 70% Colony 2~ 15%

Table 32: The percentage of the tentative predominant types of colonies obtained on TSA plates in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50 days) of Tamil Nadu soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#1	Control	4 types	Colony 1~ 65% Colony 2~ 15%
#2	Bt rhizosphere	5 types	Colony 1~ 75% Colony 2~ 15%
#3	Non-Bt rhizosphere	4 types	Colony 1~75% Colony 2~9%

Table 33: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Rajasthan soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt rhizosphere	8 types	Colony 1~ 60% Colony 2~ 25%
#3	Non-Bt rhizosphere	5 types	Colony 1~ 80% Colony 2~ 10%

Table 34: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Gujarat soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt rhizosphere	4 types	Colony 1~ 65% Colony 2~ 15%
#3	Non-Bt rhizosphere	5 types	Colony 1~ 65% Colony 2~ 25%

Table 35: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Maharashtra soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
#2	Bt rhizosphere	9 types	Colony 1~ 40% Colony 2~ 30%
#3	Non-Bt rhizosphere	7 types	Colony 1~ 75% Colony 2~ 15%

Table 36: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Karnataka soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types of colonies
	Bt rhizosphere	7 types	Colony 1~ 55% Colony 2~ 30%
#3	Non-Bt rhizosphere	7 types	Colony 1~ 60% Colony 2~ 30%

Table 37: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Andhra Pradesh soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of predominant types
#2	Bt rhizosphere	4 types	of colonies Colony 1~ 75% Colony 2~ 20%
#3	Non-Bt rhizosphere	4 types	Colony 1~ 70% Colony 2~ 20%

Table 38: The percentage of the tentative predominant types of colonies obtained on TSA plates in Bt rhizosphere and Non-Bt rhizosphere (150 days) of Tamil Nadu soil samples of II crop season

Soil sample No.	Soil sample type	Types of colonies	Percentage of
			predominant types
#2	Bt rhizosphere		of colonies
	De mizospilere	6 types	Colony 1~ 60%
			Colony 2~ 30%
43	Non-Bt rhizosphere	<i>C</i> ,	
	2 mzospiicie	5 types	Colony 1~ 55%
			Colony 2~ 30%

Table 39: Genus level identification tests of the dominant bacteria isolated from control, Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere soil samples of I crop season

Type of soil	D .	Btr	Btr	Btr, N-Btr	N-Btr	O O	Btr, N-Btr	C, Bt, Btr
Identified as	Bacillus sp	Bacillus sp	Bacillus sp	Kurthia sp	Bacillus sp	Bacillus sp	Bacillus sp	Alcaligenes sp.
Motility	+	+	+	+	+	+	+	+
Acid from glucose	M	+	+	1	+	W	A	+
O/F	t	1	1	1	1	1	[ı
Anaerobic growth	+	1	+			1	1	1
Oxidase	+	+	+	2 / 2 2 / 2 1	+	+	+	+
Catalase	+	+	+	+	+	+	+	+
Spore (+/-, position, shape, bulging)	+, subterminal, oval and round,-	+, subterminal, oval,-	+, subterminal, oval,+	1	+,terminal,-	+,subterminal,	+,subterminal,	1
Gram Staining (+/-, size, shape)	+, long rod	+, moderate rod	+, moderate rod	+, moderate rod	+, moderate rod	+, long rod	+, moderate rod	_, very short rod
	AI 12	AI 48	AI 62	Al 66	AI 103	RI 1	KI 28	
. 0	_	7	2	4	0	9 1	_ 0	0

_	Culture	Gram	Spore	Catalase	Oxidase	Anaerohic	O/F	Acid	Motility	[],	
Desi	Designation	Staining (+/-, size, shape)			i i			from glucose	Mounty	Identified as	Type of soil
MI 32	32	+, moderate rod	+, subterminal, +	+	1	+	1	+	+	Bacillus sp.	Btr
MI 61	61	+, moderate rod	+, subterminal, +	+	+		1	+	+	Bacillus sp.	N-Btr
TI I		+, long rod	+, central and subterminal, +	+	+	+	ı	+	+	Bacillus sp.	C, Bt, N-Bt,
TI 2	2	+, moderate rod	+, central, round and oval, +	+	ı	1	t	W	+	Bacillus sp.	O
TI 6		+, moderate rod	+, subterminal, +	+	+		1	W	+	Bacillus sp.	O
0 III		+, moderate rod	+, central, oval, +	+	+	+	[+	+	Bacillus sp.	C, Bt, Btr,
TI 32		+, moderate rod	+, terminal, +	+	1	1+	[1	.+	+	Bacillus sp.	Btr, N-Btr

*

O=Oxidative, F=Fermentative
W=Weakly Positive
C=Control
Btr=Bt rhizosphere
N-Bt=Non-Bt
N-Btr=Non-Bt rhizosphere

Table 40: Genus level identification tests of the dominant bacteria isolated from control, Bt rhizosphere and Non-Bt rhizosphere soil samples of II crop season

	Type of soil		C, Btr, N-	Btr	C, Btr, N- Btr	C, Btr	C, Btr, N-	Btr	C, Btr, N- Btr	C, Btr, N-	Btr	C, Btr		Btr, N-Btr		Btr, N-Btr
	Identified as		Kurthia sp		Bacillus sp	Bacillus sp	Bacillus sp.		Alcaligenes sp.	Alcaligenes sp.	,	Bacillus sp.		Bacillus sp.		Bacillus sp.
	Motility		+		+	+	+		+	+		+		+		+
	Acid from glucose)	ı		+	+	+		+	1		+		+		+
	O/F		ı	V	H	1	Į,		1	1		ı		ı		t
	Anaerobic growth				ı	1	1		ı		•	1				1
	Oxidase		1	1 1:	1	+	+		+	+		+		+		
	Catalase		+	,	+	+	+		+	+		+	77	+	+	-
	Spore (+/-, position, shape, bulging)		ı		+, central, oval,	+, subterminal, oval, +	+, central, oval,		1	1		+, central, oval,		+, subterminal, oval, +	+ central oval	+ () () () () () () () () () (
	Gram Staining (+/-, size,	shape)	+, short		+, long rod	+, long rod	+, very		-, very short rod	ı^	moderate rod	+, moderate	rod	+, very short rod	+	moderate rod
	Culture Designation		KII 1		APII 1	APII 3	APII 5		GII 1	GII 10		MII 5		MII 9	MII 13	
-	No.				2	3	4			9				∞	6	

Type of soil	C, Btr, N- Btr	C, Btr, N- Btr	C, Btr, N-	C, Btr, N-	Btr, N-Btr	Btr, N-Btr		Btr, N-Btr	Btr, N-Btr	Btr, N-Btr	Btr, N-Btr	Btr, N-Btr	Btr, N-Btr
Identified as	Bacillus sp.	Micrococcus sp.	Alcaligenes sp.	Bacillus sp.	Bacillus sp.	Kurthia sp		Bacillus sp.	Micrococcus sp.	Bacillus sp.	Arthobacter sp.	Bacillus sp.	Micrococcus sp.
Motility	+	1	+	+	+	+		+	1	+	+	+	ı
Acid from glucose	+	+	ı	+	+	1		+	+	+	1	+	ı
O/F	1	1		[I	1	1		[1	1	1	
Anaerobic growth		1	1	1	1	1		,		ı			
Oxidase	+		+	+	+	1		+	ı	+	1	+	1
Catalase	+	+	+	+	+	+		+	+	+	+	+	+
Spore (+/-, position, shape, bulging)	+, central, oval, +	1	ı	+, subterminal, oval, +	+, central, oval, +	1		+, central, oval, +	ı	+, subterminal, oval, +		+, central, oval,	-
Gram Staining (+/-, size, shape)	+, short rod	+, cocci in groups	short rod	+, long rod	+, long rod	+, moderate	rod	+, long rod	+, cocci	+, long rod	+, very short rod	+, long rod	+, cocci, tetrad form
Culture Designation	KII 1	KII 9	1111 1	TII 2	K ₁₅₀ 1	K ₁₅₀ 2	T	1150 2	T ₁₅₀ 7	M ₁₅₀ 1	M ₁₅₀ 2	R ₁₅₀ 1	R ₁₅₀ 11
No.	10	<u> </u>		S :	4	15	16				19		21

-		The same of the sa									
'nŽ	Culture			Catalase	Oxidase	Catalase Oxidase Anaerobic O/F		Acid	M	,	*
, O. T.	ro. Designation	(+/-, size,	(+/-, position, shape, bulging)			growth		from		Monnty Identified as	Type of soil
22	AP150 1	+ long	1								
	- 1	rod rod	+, subterminal,	+	+	8	[I]	+	+	Bacillus sn	Rfr N D4.
23	AP ₁₅₀ 2	+, cocci		-							חם-או ,חם
		in groups			ı	b I	1	+		Micrococcus sh Btr N-Btr	Btr N. Btr.
24	24 G ₁₅₀ 2	+	+. Subterminal	+							חם-אוי, ואכ
		moderate			+	ı	ı		+	Bacillus sp.	Btr N-Btr
		rod								4	, , , , , , , , , , , , , , , , , , ,
25	25 G ₁₅₀ 7	+	+, central &	+	+						
		moderate	subterminal,			ı	ı	ı	+	Bacillus sp.	Btr. N-Btr
		rod	oval. +							4	

O=Oxidative
F=Fermentative
C=Control
Btr=Bt rhizosphere
N-Bt=Non-Bt
N-Btr=Non-Bt rhizosphere.

Table 41: Results* of estimation of Bt protein (Cry1 Ac) concentration in Control (0 day), Bt, Bt rhizosphere, Non-Bt and Non-Bt rhizosphere (50 and 150 days) soil samples of I crop season, using Envirologix Quantiplate Mit for Cry1 Ab/Cry1 Ac.

		0.000	Blank
0.171	0.181	0.192	1.5 ng*
0.916	0.898	0.880	10 ng*
 1 703	1.712	1.727	2.5 ng*

T		Rajasthan			Gujarat	t		Mahar	
Soil Samples	% b	50 d	150 d	P 0	Y 0.5			TATAMATATA	Sutra
	2000		2		000	DACT	D 0	50 d	150 d
	0.000			0.006			0.038		
Bt		0 010	0 000	4			-0.000		
		0.019	0.000		0.008	-0.015		0004	0010
Birhizosphere	,	0007	0 000	The second secon		0.010		-0.024	-0.010
THE RESERVE OF THE PARTY OF THE		-0.02/	-0.002		-0.008	-0.008		0 002	0.010
Non-Bt		0 008	0 000					-0.023	-0.010
7		0.000	-0.002		-0.006	-0.003		-0.014	0000
INOH-DI		-0.007	0 000		2000	0.017		-	0.000
					-0.000	0.016		-0.013	-0.010

States	1	Karnataka	A	A	Andhra Pradesh	lesh		Tomil N. J.	
Soil Samples	0 d	50 d	150 d	P U	F 05	150.1		Tamil Madu	
Cantral	0.010	\$	2004	000	DOC	DOCI	0 d	50 d	150 d
COULTAI	-0.010			-0.006			0 005		200
Rt		0 000	001				0.000		
		-0.003	-0.01/		-0.000	-0.007		0000	0000
Bt rhizosphere		0 026	000		0000			0.020	-0.030
27		0.010	0.00		-0.002	-0.007		-0 007	0.012
Non-Bt		-0 018	_0 007		0 00 4			0.00	C.U.U.
Non Dt			0.00		-0.004	-0.015		0.000	-0 007
JG-HOLT		-0.01	0.005		0 000	0.017			0.00
rhizosphere		3			0.002	0.014		0.000	-0.002

^{*,} Values are reading at 450 nm wavelengths in ELISA reader

d: Number of days

^{*,} Calibrators available in kit for Cry1 Ac in triplicates

and 150 days) soil samples of II crop season, using Cry1 Ac/ Ab Elisa Kit. Table 42: Results* of estimation of Bt protein (Cry1 Ac) concentration in Control (0 day), Bt rhizosphere and Non-Bt rhizosphere (50

	The state of the state of	T OSITIAC COULT OF
0.000	-0.007	F.FFF
	0 000	י דידי

Soil Sample		Kajasthan			Gujarat			17	Maharshtra
Sour Samples	0 d	50 d	150 d	0 · d	50 d	150 d		D 0	0 d 50 d
Contuc	0 010				4	,	Г	5	
Control	-0.010			-0.006				0.016	0.016
Bt rhizosphere		-0.004	0.001		0.002	0.017			-0.008
7									
Non-Bt rhizosphere		-0.002	-0.010		-0.013	-0.008			-0.001

States		Karnataka	ka	F	Andhra Pradesh	sh	. 1	Tamil Nadu
Soll Samples	0 d	50 d	150 d	0 d	50 d	150 d	0 4	F 05
Control	0 000				9	7001	0 0	DOC
COHHOI	0.000			-0.010			0.007	
							en e	
Bt rhizosphere	3	-0.005	-0.001		0.016	-0.008		-0.000
AT TO THE								
Non-Bt rhizosphere		0.002	0.003		-0.010	0.019		-0 004

^{*,} Values are reading at 450 nm wavelengths in ELISA reader

d: Number of days FFF: Beyond range

^{*,} Negative Control & Positive Control available in kit for Cry1 Ac